
D&B Visitor Intelligence Form Fill

W H AT I S V I S I TO R I N T E L L I G E N C E

F O R M F I L L?

Dun & Bradstreet’s Visitor Intelligence Form Fill helps
customers increase form completion rates, streamline
the submission process, and improve accuracy. This data
comes from the full universe of company information
tied to the D-U-N-S® number and associated family tree
linkages and can include attributes that would be
impossible to obtain via regular user interactions.

The underlying APIs be triggered by multiple different
form inputs including company name and e-mail
address. The output of the form can be sent into any
customer-controlled platform. With no major changes
required to the form itself, this should speed time-to-
market and minimize customer upkeep requirements.

P R E R E Q U I S I T E S

The following is required in order to use Visitor
Intelligence Form Fill:

•	 The web form(s) in question is a standard HTML
<form> object with attendant <input> fields

•	 It is hosted in a location where additional JavaScript
code can be placed

•	 At least three specific inputs are defined (either
visible or hidden): e-mail address, company name,
and country

The following non-standard cases can potentially be
supported via customization:

•	 Forms that are built entirely within Flash or other
technologies

•	 A site that is using an overarching JavaScript library
which defines a proprietary data layer outside of the
standard DOM (for example, ReactJS)

•	 Progressive or dynamic forms whose layout and
contents may change between visitors, over time,
or both

Please note: The code examples provided within this
document are for reference purposes only and are not to
be used as-is.

O V E R V I E W

Visitor Intelligence Form Fill is a self-contained solution
that leverages Dun & Bradstreet’s industry-leading
global database of commercial entities to return
pertinent data back to your form, improving completion
rates and the accuracy of the submitted data. There are
three major components to the JavaScript code
provided:

•	 A JavaScript library file that contains the client-side
code, plus a link to our privacy disclosures and
opt-out mechanism

<!--START DNB VIFF JS-->
<!--For opt-out information, please visit:
https://d41.co/-->
<script type=”text/javascript” src=”//cdn-0.
d41.co/tags/ff-2.min.js” charset=”utf-8”></
script>

•	 A mapping between your form input fields and our data elements, along with other preferences for how the
application behaves

<script type=”text/javascript”>
if (window.ActiveXObject) {
 window.ActiveXObject = null;
}
var dpa = new Fill.LeadFormApp({
 visitorIntelligenceApiKey: “@API_KEY@”,
 defaultCompanyCountry: “US”,
 leadFormName: “@FORM_NAME@”,
 companyCountrySearchFieldName: “@COUNTRY@”,
 contactEmailSearchFieldName: “@EMAIL@”,
 companyNameSearchFieldName: “@COMPANY@”,
 useLIDropdowns: true,
 visitorIDEnabled: false,
 initialFocusFieldName: “”,
 dunsFieldName: “@DUNS@”,
 companyNameFieldName: “@COMPANY@”,
 address1FieldName: “@ADDRESS1@”,
 address2FieldName: “@ADDRESS2@”,
 cityFieldName: “@CITY@”,
 stateFieldName: “@STATE@”,
 postalFieldName: “@POSTALCODE@”,
 countryFieldName: “@COUNTRY@”,
 naicsCodeFieldName: “@NAICS_CODE@”,
 naicsDescriptionFieldName: “@NAICS_DESCRIPTION@”,
 sicCodeFieldName: “@SIC_CODE@”,
 sicDescriptionFieldName: “@SIC_DESCRIPTION@”,
 revenueFieldName: “@REVENUE@”,
 employeeSiteCountFieldName: “@EMPLOYEES@”,
 firstNameFieldName: “@FIRST_NAME@”,
 lastNameFieldName: “@LAST_NAME@”,
 vanityTitleFieldName: “@VANITY_TITLE@”,
 globalUltimateDunsFieldName: “@GU_DUNS@”,
 globalUltimatePrimaryNameFieldName: “@GU_NAME@”,
 domesticUltimateDunsFieldName: “@DU_DUNS@”,
 domesticUltimatePrimaryNameFieldName: “@DU_NAME@”,
 parentDunsFieldName: “@PARENT_DUNS@”,
 parentPrimaryNameFieldName: “@PARENT_NAME@”,
 globalUltimateFamilyTreeMembersCountFieldName: “@TREE_SIZE@”,
 phoneFieldName: “@COMPANY_PHONE@”,
 telephoneNumberFieldName: “@PERSONAL_PHONE@”,
 domainFieldName: “@DOMAIN@”,
 tradeStyleNameFieldName: “@TRADE_NAME@”,
 currencyFieldName: “@CURRENCY@”
});

•	 A function call that imposes the relevant listeners
upon the mapped input fields, at which point our
solution can be considered fully active on that
web page

dpa.attach();
</script>
<!-- END DNB VIFF JS-->

<input id=”field3” name=”jobTitle”
type=”text” value=”” class=”field-size-
top-large”>

vanityTitleFieldName: “jobTitle”,

//naicsDescriptionFieldName: “@NAICS_
DESCRIPTION@”,

Generally, only the second item – application
preferences and data mapping – will require your input.

The underlying matching methodology operates in two
pieces: form pre-population and user-directed searches.
Form pre-population is disabled by default due to its
potential impact on the overall user experience; please
see the appendix for more information on how to
enable it. User-directed searches rely on either of two
pieces of information:

•	 E-mail address: This will trigger two separate
searches, one for the precise e-mail address provided
and another for the domain portion only. The
former takes precedence and is the only situation in
which we are able to return individual-level data
such as name, title, and personal phone number. The
latter will be utilized as the secondary result and
will return the company that is associated with that
domain on a global basis.

•	 Company name typeahead: This initiates a low-
latency connection to the server, producing a list of
the ten most likely candidates given the current
input. The results list will refresh dynamically as
additional letters are added. The country input will
determine the scope of the results returned.

Either of the above can be disabled, in which case that
input field will behave as normal and will not lead to
any data being injected. More information on this can
be found in the appendix.

Keep in mind that the layout of the form itself will have
a substantial role in how the user interacts with the
application and what search method is likely to be used.
Best practice is to begin with e-mail input, followed by
country and company name: that ensures the flow is
from the most precise option to the least, minimizing
the likelihood of user input being overwritten.

M A P P I N G

An example input element is below. Normally, both the
“id” and “name” attributes will exist. Visitor
Intelligence Form Fill requires the use of names. Support
for IDs is coming in a future update, but will still
require that those values be unique to ensure proper
functioning.

If your IDs or names are static (do not change over
time), then the mapping process is simple: the right-
hand side of the mapping should be updated to the
name of the appropriate input in your form. Using the
example above for job title, the resulting line in the final
JavaScript would be:

The surrounding quotes should be left intact. In
addition, please confirm that they are “straight”
quotation marks and not the “fancy” version that is
used by default in Microsoft Office.

Unused mappings can be commented out of the code
altogether, or that entire line removed:

F I N D I N G I N P U T F I E L D S

There are multiple ways to obtain the proper mapping for
each of your input fields. The most common methods are
discussed below, with the assumption that the reference
remains static.

If you are not certain that yours are static, we recommend
going through the process below a few times, refreshing
the page between each one. If the output is not consistent
between page refreshes, please refer to the “Dynamic
Mapping” section.

Pressing F12 should open the Developer Tools window
for your browser. This is a screen that lays bare most of
the underpinnings of the website and is a necessary part
of this process. There are a few panes running across the
top of the window, three of which will be used within this
documentation:

•	 ELEMENTS: An expanded view of the underlying
source code for the site

•	 CONSOLE: The browser console, through which
JavaScript can be run and the output displayed; this
component is also the default option for the bottom
module of the Developer Tools window, meaning this
remains accessible when viewing the other panes

•	 NETWORK: A complete accounting of every network
call that has been incurred while on the current page

As mentioned in the pre-requisites, there are three
special mappings that must exist for the application
to operate correctly. These represent the inputs used
for initiating searches. Even if the relevant search
functionality has been disabled, please continue to
map these, even if it is to hidden fields that have no
bearing on the user experience. As named in the
mapping array, they are:

•	 companyCountrySearchFieldName

•	 contactEmailSearchFieldName

•	 companyNameSearchFieldName

The remaining input field mappings are all intended
to be outputs where the relevant data will be injected
if the application has found a successful match and
there is applicable information on file.

There is an equivalent output field mapping for each
of the three input fields. In most cases, the same
mapping will apply to both. However, this does allow
you to split output from input in use cases such as
fraud detection or user verification: all outputs from
Visitor Intelligence Form Fill are sent to hidden fields
so that the website owner can compare against what
the user provided after-the-fact.

If your form was created in Marketo, Eloqua, or a similar platform, the name of each input was likely defined within
that interface.

I N S P E C T

In all modern browsers, right-clicking on a form input field – or any other component of a web page – should bring up
a context menu that includes an “Inspect” option. Doing so will bring up the Elements pane with that element in focus.
From there, you should be able to copy the “name” value and use that for the mapping.

document.getElementsByName()

This JavaScript method will return a list of objects on
the page that match the name provided. As names are
not intended to be unique, the expected output is an
array listing out all items that match your input.

This example console command will return an array of
all elements with the name “jobTitle”.

For verification, you can query directly for the “id” of
any item in the nodelist (keeping in mind that JavaScript
arrays start counting from zero):

document.getElementById()

This is the more precise option and returns the object that
matches the ID provided. IDs are intended to be unique, so
will only return the first matching result found.

Country Filtering on Typehead

The typeahead search capability currently allows for
the use of a country filter to restrict the set of returned
results. This can be done in one of two ways:

•	 Via a user-selectable input field which is then
mapped to “companyCountrySearchFieldName”

•	 As a hard-coded list in the code itself, which the
user will not be able to override

The application currently accepts country inputs via
three different standards: two-character ISO country
code (“US”), three-character ISO country code
(“USA)”, and plaintext (“United States”).

Setting the appropriate country format or using a
hard-coded country list can both be done via additional
parameters in the JavaScript.

C O M M O N E R R O R S

Once the mapping has been updated in the code and
placed on the page, you will be able to interact with the
active form search fields to trigger the expected
functionality. Installation directly in the site code or
injection through a tag management system are
both fine.

Keep in mind JavaScript is case-sensitive! Mapping the
input field “jobTitle” is not the same thing as “jobtitle”.

Country Error: Uncaught TypeError: Cannot read
property ‘offsetLeft’ of null

This will be logged to the console as an error message
in red text.

The form will continue to function, but no input will
appear from Visitor Intelligence Form Fill. If you have
checked your mappings and don’t see a problem, this is
most likely due to a timing issue: the form object itself or
at least one of the three mandatory input fields did not
exist at the same that the Visitor Intelligence Form Fill
code was loaded.

You can work around this easily by decoupling the listener
attachment command from the rest of the code. Please
refer to the appropriate section in Advanced Techniques
for more information.

Network Error: 401 HTTP status code

The application will also appear inactive here, but in lieu
of a console error logged, the relevant networks calls being
made to the application will appear with a status code of
401.

In some cases, the application may appear to mysteriously
stop responding after some time, with all subsequent
requests changing over to a 401 status code.

If the application was working at any point prior, please
also provide your public (externally-visible) IP address.
You can obtain that by typing “what is my ip address”
into any search engine.

A D VA N C E D T E C H N O L O G I E S

The following information is intended for users with a
web development background.

Decoupling dpa.attach();

The third section of the JavaScript code calls “dpa.
attach();” to enable the listeners, after which the
application can be considered fully live. By default, this is
included in the same block of JavaScript as the mapping
array itself.

The mapping does not truly apply – more specifically, the
application does not check for the input fields listed in the
mapping – until that call is invoked. The likely scenarios in
which this would be necessary are:

•	 The “offsetLeft” console error mentioned earlier

•	 A progressive or dynamic form that loads one or more
mandatory input fields only if certain criteria are met

The solution is to invoke “dpa.attach();” at a later point,
ideally off of a trigger such as the successful loading of the
form itself.

M U LT I P L E F O R M S

Visitor Intelligence Form Fill is designed to work with
multiple forms on the same page. The “dpa” object as
defined in the JavaScript is not set in stone, and you can
easily create multiple concurrent copies of the application
by defining each form as a separate object (dpa1, dpa2,
etc) and then running the equivalent .attach method
against each of them when needed (dpa1.attach, dpa2.
attach, etc).

D Y N A M I C M A P P I N G

If your input field names are not static, there are various
ways to programmatically obtain the proper mapping. The
only requirement is that there be something static
associated with the input fields, such as a common class.
(Put another way, you must be able to narrow down to the
appropriate element in the console via some combination
of JavaScript methods.)

getInput = function(className, tag=’input’){
	 var getInputByClass = document.getElements
ByClassName(className)[0];
	 var input = getInputByClass.
getElementsByTagName(tag)[0];
	 return input.name;
};

The solution is to write a separate function that can find
the necessary name given other inputs. The necessary
mapping table can then be constructed by iterating over
that function for each relevant field.

An example is below that is based on the following
assumptions:

•	 All inputs are part of the class “input”

•	 The “name” component to each input is static,
although the “id” is not

This can be followed by a separate set of code that runs
the above function for each relevant input field and
assigns them to a variable name. The variables are then
used in the main mapping within the body of the Visitor
Intelligence Form Fill code, allowing for that entire block
of code (the getInput function and associated variable
mapping) to be reused across your site.

A P P E N D I X

PARAMETER NAME DEFAULT
DATA
TYPE

DESCRIPTION

leadFormName* string The name of the form. If left blank, it will attach itself to the
first form found on the page.

contactEmailSearchFieldName* string The name of the e-mail field.

companyNameSearchFieldName* string The name of the company name field.

companyCountrySearchFieldName* string The name of the country field.

visitorIDEnabled TRUE boolean If enabled Visitor Intelligence will pre-populate form if a
match is found on IP lookup and cookie matching.

visitorIDSyncEnabled TRUE boolean If enabled the /sync event will occur (disable to preclude the
use of partner cookies in matching).

companySearchEnabled TRUE boolean If enabled typeahead searching will be performed on
company field.

contactSearchEnabled TRUE boolean If enabled e-mail search will be performed on email field.

liSelectedClass string Allows user to specify a css class to style which option from
dropdown is selected. If left blank it will use the default style.

defaultCompanyCountry string Sets the default ISO-2 country code.

companyCountryFilter [] array Will filter out country options on a SELECT tag to only include
countries in the given array.

displayHiddenFields FALSE boolean Will display hidden fields on form. This should only be used
for testing and debugging.

clearCompanyAfterCountryChange TRUE boolean If set to true, will clear the company data after country field
value changes.

searchCompanyAfterCountryChange TRUE boolean If set to true, will perform company name search after country
field changes.

clearCompanyAfterTypeaheadChange FALSE boolean If set to true, will clear the company data after company name
value changes.

globalCountrySearch FALSE boolean Whether the system should always search globally for
typeahead (ignoring input country filters).

countryValueType string Eligible values are "iso2", "iso3", and "plaintext".

emailSearchAfterChars 2 integer Number of characters after "." to search searching (where "."
is after "@").

emailSearchOnBlur TRUE boolean If TRUE, search will be on blur; otherwise, on keyup.

companyNameSearchAfterChars 2 integer Number of input characters before system attempts
typeahead queries.

initialFocusFieldName string Field where initial focus should be placed; use an empty
string ("") to disable focus stealing entirely.

ABOUT DUN & BRADSTREET

Dun & Bradstreet, a leading global provider of business decisioning data and analytics, enables companies around the world to improve their business performance.
Dun & Bradstreet’s Data Cloud fuels solutions and delivers insights that empower customers to accelerate revenue, lower cost, mitigate risk, and transform their businesses.
Since 1841, companies of every size have relied on Dun & Bradstreet to help them manage risk and reveal opportunity. Twitter: @DunBradstreet

© Dun & Bradstreet, Inc. 2020. All rights reserved. (CREATIVEUX-2317 10/20) dnb.com

dropDownSize 10 integer Size of dropdown list. Only valid if useLIDropdowns is false
and CSS has not set the height otherwise.

noSearchResultsClearFieldEnabled TRUE boolean Clear all mapped form fields (even if filled in via other means)
depending on success of e-mail search input.

clearFieldsIfNoEmailSearchMatch FALSE boolean Clears relevant persona fields (name, title, phone) depending
on success of e-mail search input.

attributeForFieldLookup name string Eligible valuesare "name" or "id". Indicates what attribute
should be used for field mapping.

viffResponse function Function on the host page that will be called in lieu of
changing form fields directly via the mapping. Output will be
in JSON.

setInitialCountryByIp TRUE boolean If disabled, the user's IP address will not be used to
automatically determine typeahead search scope.

typeaheadSearchResultsDisplayType default string Eligible values are "default", "noStreet", and "nameOnly".
Please be aware that the last one may cause apparent
duplicate results to appear.

*Recommended parameter

https://twitter.com/DunBradstreet
http://dnb.com

